Shape recovery for sparse-data tomography

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optoacoustic Tomography Using Accelerated Sparse Recovery and Coherence Factor Weighting

Corresponding author: Vasilis Ntziachristos Ingoldstädter Landstraße 1, 85764 ,Neuherberg, Germany; E-mail: [email protected]

متن کامل

Sparse Parameter Recovery from Aggregated Data : Supplement

To our knowledge, all prior work in the literature (eg. [Herman & Strohmer 2010; Chi et al. 2011; Rosenbaum et al. 2013; Rudelson & Zhou 2015] among others) only concern themselves with cases 1, 2 and 3. Moreover, for papers that do deal with case 2 and 3, unless s = 0 the existing analysis will be restricted to providing only approximate recovery guarantees. Thus, these methods do not apply di...

متن کامل

Sparse Parameter Recovery from Aggregated Data

Data aggregation is becoming an increasingly common technique for sharing sensitive information, and for reducing data size when storage and/or communication costs are high. Aggregate quantities such as group-average are a form of semi-supervision as they do not directly provide information of individual values, but despite their wide-spread use, prior literature on learning individual-level mo...

متن کامل

Local Differential Privacy for Physical Sensor Data and Sparse Recovery

In this work, we exploit the ill-posedness of linear inverse problems to design algorithms to release differentially private data or measurements of the physical system. We discuss the spectral requirements on a matrix such that only a small amount of noise is needed to achieve privacy and contrast this with the ill-conditionedness. We then instantiate our framework with several diffusion opera...

متن کامل

Adaptive Frequency-domain Regularization for Sparse-data Tomography

A novel reconstruction technique, called Wiener Filtered Reconstruction Technique (WIRT), for sparse-data tomographic imaging is introduced. This six-step method applies a spatially varying constrained leastsquares filter combined with a regularization method based on total variation. The WIRT reconstruction is implemented in the frequency domain, where the information based on measurements and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in the Applied Sciences

سال: 2017

ISSN: 0170-4214

DOI: 10.1002/mma.4480